CETESB

E2.102

INDICADORES DE VAZÃO E INDICADORES DE PERDA DE CARGA PARA FILTROS RÁPIDOS DE GRAVIDADE

SUMARIO		Pāginas
1	Objetivo	t
2	Referências	. 1
3	Delinicaex	1
4	Condições Gerais	2
5	Condições Especificas	2/5
6	Ensaios	5/6

1 OBJETIVO

1.1 Esta Norma fixa as condições mínimas exigíveis para o recebimento de Indicadores de Vazão e de Indicadores de Perda de Carga para Filtros Rápidos de Gravidade, usados em Estações de Tratamento de Água.

1.2 Esta Norma se aplica a:

- a) indicadores que medem a vazão efluente do filtro, com indicação a para leitura no corredor de comando, utilizando os diferenciais de pressão de um medidor Venturi para realizar as medidas;
- b) indicadores que medem a perda de carga no filtro, com indicação para leitura no corredor de comando, mediante tomadas diretas de pressão nas partes superior e inferior do filtro.

2 REFERÊNCIAS

Na aplicação desta Norma pode ser necessário consultar:

- a) da ABNT,
 - EB-584 Requisitos Gerais para Tubos de Cobre e Ligas de Cobre sem Costura.

3 DEFINIÇÕES

Para os efeitos desta Norma é adotada a definição 3.1.

3.1 Mostrador

Elemento que contêm a escala do indicador.

4 CONDIÇÕES GERAIS

4.1 Identificação

Os indicadores de vazão e indicadores de perda decarga devem ser providos de placa de identificação firmemente presa, na qual devem estar marcadas, de forma indelevel, no mínimo as seguintes informações:

a) a expressão "Indicador de Vazão" ou "Indicador de Perda de Carga";

b) razão social e endereço do fabricante;

c) modelo ou tipo, de acordo com o catalogo do fabricante;

d) número e/ou letras de fabricação ou série; 🚉

- e) ano de fabricação;
- f) faixa de medição.

4.2 Inspeção e aceitação

- 4.2.1 Os indicadores de vazão e os indicadores de perda de carga fabricados con forme esta Norma podem ser inspecionados pelo comprador ou seu representante.
- 4.2.1.1 O fabricante deve facilitar o livre acesso, do comprador ou seu representante, a todas as fases de fabricação e à realização de ensaios.
- 4.2.1.2 A instalação para a realização de ensaios deve estar sujeita a aprovação previa do comprador ou seu representante.
- 4.2.2 O indicador será aceito se for constatado que cumpre com todos os requisitos desta Norma.

5 CONDIÇÕES ESPECÍFICAS

- 5.1 Cada indicador, o de vazão e o de perda de carga, deve ser de construção e funcionamento independente, podendo, entretanto, a pedido do comprador ser acoplado um ao outro de modo a formar um conjunto.
- 5.2 Na determinação dos valores da vazão e da perda de carga podem ser utiliza dos manômetros de diafragma ou de coluna de mercurio.
- 5.3 A transmissão de sinais entre elementos podem ser mecânica, elétrica ou peneumática.
- 5.4 Todos os meios de transmissão, tais domo, fios ou cabos elétricos ou mecânicos e tubos são considerados parte integrante do aparelho.
- 5.5 Devem ser providos de uma valvula de isolamento para cada tomada de pressão.
- $\underline{5.6}$ Os componentes moveis e/ou frageis devem ser adequadamente protegidos con tra danos.

- 5.7 Todas as partes sujeitas a fricção durante o funcionamento do aparelho de vem ser protegidos contra poeira pelo uso de guarnições.
- 5.8 Os mancais e/ou vinculos giratórios e/ou deslizantes, componentes de processos baseados no equilibrio de forças, devem ser auto-lubrificantes ou ser do tipo que dispensa o uso de lubrificantes.
- 5.9 Osveomponentes movimentados por forças de posicionadores servo-mecânicos não estão sujeitos à exigência de 5.8.
- 5.10 Deve ser de precisão mínima igal a + 1% em relação ao fundo da escala.
- 5.11 O erro máximo admissível em cada determinação individual não deve ser su perior a ± 3%, calculado conforme 6.3 d).
- 5.12 Devem ser providos de calibrador de percurso de escala que alongue ou en curte proporcionalmente o percurso do ponteiro do mostrador, ajustavel dentro de um intervalo mínimo de ± 10% do comprimento da escala.
- 5.13 Todas as vedações de eixos moveis que transpassem câmaras de pressões di ferentes devem possuir selos mecânicos ou diafragmas.
- 5.14 À escala do mostrador deve ser do tipo linear ou proporcional e obedecer ao prescrito em 5.14.1 a 5.14.4.
- 5.14.1 Pode ser circular ou reta e deve ter comprimento igual ou superior a 240 mm, medido sobre a graduação e no intervalo útil graduado.
- 5.14.2 A relação entre a menor divisão e o maior valor útil da escala, deve ser de 1:40.
- 5.14.3 As graduações devem ser inscritas em cor que contraste com o fundo.
- 5.14.4 Deve ser provido de calibrador do zero, ajustavel dentro de um interva lo mínimo de 5% do comprimento da escala.
- 5.15 Quando utilizados diafrágmas metálicos, devem ser de material resistente a corrosão e usados no máximo a 30% do seu limite de deformação elástica.
- 5.16 Os encostos e as orlas de fixação dos diafrágmas devem ser de material resistente à corrosão.
- 5.17 Os tubos de transmissão, quando utilizados, devem obedecer o seguinte:
 - a) ser de cobre recozido, sem costura, de seção circular, que satisfaçam a EB-584 da ABNT;

- b) ser providos de purgadores de ar, tanto na parte superior de cada câma ra de medição como próximo a cada tomada de pressão.
- 5.18 Os manômetros de mercurio, quando utilizados, devem ser como previsto em 5.18.1 a 5.18.4.
- 5.18.1 O mercurio utilizado deve ser do tipo tridestilado.
- 5.18.2 A capacidade volumétrica de cada ramo deve ser maior ou igual a 1,5 vezes o volume total do mercurio.
- 5.18.3 As câmaras de mercurio, bem como todos seus componentes internos, devem ser de materiais resistentes à corrosão e não devem conter elementos que possam formar ligas com o mercurio. Estas câmaras devem ser construidas de tal maneira que não haja possibilidade de o mercurio vir a atingir os reservatórios de agua tratada.
- 5.18.4 Não deve haver contato direto do mercurio com a agua em tratamento.
- 5.19 Os fios e cabos de transmissão mecânica, quando utilizados, devem ser do tipo trançados, de material resistente à corrosão e, ainda:
 - a) o coeficiente de dilatação térmica linear do material deve ser menor que 14×10^{-6} (°C)⁻¹;
 - b) a flexibilidade deve ser tal que não interfira nem na precisão e nem na sensibilidade do aparelho.
- 5.20 O sistema de alimentação de ar dos indicadores, quando utilizado, deve obe decer ao prescrito em 5.20.1 e 5.20.2.
- 5.20.1 Deve ser provido de regulador de pressão capaz de reduzir a pressão, até as condições condizentes com o regime de trabalho, e ainda:
 - a) ser provido de valvulas para drenagem;
 - b) ser provido de dispositivo para retenção de umidade e corpos estra nhos;
 - c) ser provido de manômetro, indicador da pressão reduzida, com escala graduada em mH₂0 com menores subdivisões não superiores a 0,5 mH₂0.
- 5.20.2 Deve ser provida de regulador de vazão, capaz de manter constante a vazão de ar fornecida ao indicador, com rotâmetro de vidro com escala graduada. A regulagem da vazão deve ser por meio de valvula de agulha construida em material resistente à corrosão.
- 5.21 Os indicadores de perda de carga devem ser providos de crivo de material resistente à corrosão para a tomada de pressão superior. A tubulação da pressão superior deve ser provida de um retentor de impurezas em suspensão, com valvula para drenagem, de limpeza simples.
- 5.22 Os indicadores de vazão devem ser fabricados levando-se em consideração a curva real de trabalho do Venturi.

5.23 Nos casos em que o Venturi não faça parte do fornecimento do indicador de vazao, o comprador deve fornecer ao fabricante a curva real de trabalho do Venturi a fim de poder realizar uma correta calibração da escala do indicador.

6 ENSAIOS

6.1 Aparelhagem

Para a execução dos ensaios são necessários:

a) curva real de trabalho (vazão em função de diferencial de pressão) do Venturi com o qual devé trabalhar o indicador de vazão;

b) dispositivo hidraulico capaz de fornecer todos os diferenciais de pressão da curva de trabalho do Venturi;

c) dispositivo hidraulico capaz de fornecer todos os possíveis diferenciais de pressão compreendidos entre zero e 4 mH₂0.

NOTA: Quando o medidor Venturi fizer parte do fornecimento do indica dor de vazão pode-se utilizar o proprio Venturi no lugar de sua curva de trabalho e, neste caso, é necessário um equipamento auxiliar para medir a vazão de agua que escoa pelo Venturi para cada diferencial de pressão.

6.2 Materiais necessarios

Para a execução do ensaio e necessário agua limpa.

6.3 Execução do ensaio do indicador de vazão

Proceder da seguinte maneira:

a) conectar os tubos de tomada de pressão ao dispositivo hidraulico e proceder a calibração do aparelho conforme as instruções do fabricante;

b) escolher na curva de operação do Venturi um diferencial de pressão e anotar a vazão correspondente l_c;

c) aplicar, através do dispositivo hidraulico, o diferencial de pressão es colhido ao indicador e fazer a leitura da vazão 1;

d) comparar a vazão lida no indicador com a lida na curva de operação do Venturi e calcular o erro relativo da seguinte maneira:

$$e = \frac{1_c - 1_i}{1_c} \times 100$$

onde:

curva.

e = erro relativo

1; = leitura da vazão no indicador, em unidade do SI
1c = leitura da vazão na curva, nas mesmas unidades de 1;

e) repetir b), c), e d) para pelo menos 10 pontos diferentes da curva de operação do Venturi, igualmente distribuidos entre os extremos dessa

6.4 Execução do ensaio do indicador de perda de carga

Proceder da seguinte maneira:

a) conectar os tubos de tomada de pressão ao dispositivo hidráulico e proceder à calibração do aparelho conforme as instruções do fabricante;

b) aplicar, através do dispositivo hidraulico, um diferencial h_d de pressão entre zero e quatro metros de coluna de agua medido no proprio dispositi-

c) fazer a leitura hi, da perda de carga, no indicador;

d) comparar a altura lida no indicador com a lida no dispositivo hidraulico e calcular o erro relativo da seguinte maneira:

e (%) =
$$\frac{h_d - h_i}{h_d}$$
 x 100

onde:

e = erro relativo do indicador, em porcentagem;

h; = diferencial de pressão (perda de carga) no indicador, em mH₂0;

h_d = diferencial de pressão no dispositivo hidraulico, em mH₂0;

e) repetir b), c) e d) para pelo menos dez pontos diferentes igualmente dis tribuidos no intervalo de operação do indicador.